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Abstract

This paper develops a novel econometric framework for static discrete choice games

with costly information acquisition. In traditional discrete games, players are assumed

to perfectly know their own payoffs when making decisions, ignoring that informa-

tion acquisition can be a strategic choice. In the proposed framework, I relax this

assumption by allowing players to face uncertainty about their own payoffs and to

optimally choose both the precision of information and their actions, balancing the ex-

pected payoffs from precise information against the information cost. The model pro-

vides a unified structure to analyze how information and strategic interactions jointly

determine equilibrium outcomes. The model primitives are point identified, and the

identification results are illustrated through Monte Carlo experiments. The empirical

application of the U.S airline entry game shows that the low-cost carriers acquire less

precise information about profits and incur lower information costs than other airlines,

which is consistent with their business model that focuses on cost efficiency. The anal-

ysis highlights how differences in firms’ information strategies can explain observed

heterogeneity in market entry behavior and competition.
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1 Introduction

In many economic environments, decision makers may not perfectly know their own pay-

offs and acquire information about the payoffs when making choices. Such information

acquisition is often costly and affects players’ behavior. Recent empirical works have doc-

umented this phenomenon in various contexts such as insurance choice (Brown and Jeon,

2024), laundry detergent choice (Joo, 2023), and presidential election (Liao, 2024). Further-

more, experimental evidence shows that individuals tend to acquire costly information

when facing payoff uncertainty (Dewan and Neligh, 2020; Dean and Neligh, 2023; Almog

and Martin, 2024). These findings highlight the importance of incorporating costly infor-

mation acquisition into economic models of decision making under payoff uncertainty.

This paper develops a novel econometric framework for static discrete choice games

with costly information acquisition. Previous discrete choice games with incomplete in-

formation (e.g., Bajari et al. 2010; Aradillas-Lopez 2010) typically assume that each player

fully observes their own payoff but not their rivals’ payoffs. This paper relaxes this as-

sumption and allows players to face uncertainty about their own payoffs and to acquire

information about them. The players optimally choose how much information to acquire

about the payoffs, taking into account the costs, and thus determine the precision of their

information. This generalization provides a more realistic and flexible framework for an-

alyzing strategic interactions under incomplete information.

Existing literature in industrial organization utilizes static discrete game models to

analyze the strategic interactions between firms. These models typically impose strong

assumptions about players’ information, ignoring the possibility that information acqui-

sition itself can be a strategic choice. For example, the models used to study firms’ entry

decisions, location decisions, and coordination (Bresnahan and Reiss, 1991; Magnolfi and

Roncoroni, 2022; Berry, 1992; Ciliberto and Tamer, 2009; Koh, 2023; Seim, 2006; Sweeting,

2009) assume that players have either complete information or incomplete information

about their own payoffs. These assumptions on information overlook the fact that players

may not perfectly know their own payoffs and may choose to acquire information strate-

gically.

Unlike the previous discrete games with incomplete information, this paper models

the information structure as the outcome of a strategic choice involving costly informa-

tion acquisition. Each player’s information structure consists of signals about their own
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payoffs and distributions of these signals. The precision of information is determined by

the signal distributions. Acquiring more precise signals is more costly, and each player

considers the trade-off between the benefits of acquiring more precise information and

the associated costs. Thus, players strategically choose which signals to acquire and the

distributions to maximize their expected payoffs net of the information costs.

Formally modeling costly information acquisition poses several challenges. The do-

main of information structures is infinite-dimensional, which makes it difficult to char-

acterize players’ optimal choices and to derive equilibrium conditions. To address these

issues, I adopt the framework of rational inattention (Matějka and McKay, 2015). The the-

ory of rational inattention provides a well-suited framework for analyzing the players’

optimal strategies in games with costly information acquisition. In particular, within this

framework, players’ optimal strategies yield a tractable characterization of Nash equilib-

rium (Denti, 2023; Yang, 2015, 2020; Montes, 2022). This tractability simplifies equilibrium

analysis and leads to a feasible model estimation.

In equilibrium, the model captures heterogeneity in players’ ability to acquire infor-

mation through variation in the information strategies across players. This contrasts with

previous models that impose an exogenous information structure, where all players are

assumed to have the same or arbitrarily specified information. By allowing endogenous

information acquisition, the model provides a unified framework to analyze how differ-

ences in information strategies, information costs, and player characteristics jointly deter-

mine equilibrium outcomes.

Next, I show that the model primitives are identified in both parametric and semi-

parametric settings. The key assumption for the identification is the exclusion restriction.

That is, a player-specific variable affects only one player’s payoff with no effect on the

rival players’ payoffs. The exclusion restriction is not a strong assumption and is com-

monly used in the literature on discrete games (Tamer, 2003; Ciliberto and Tamer, 2009;

Aradillas-Lopez, 2010; Grieco, 2014; Magnolfi and Roncoroni, 2022; Koh, 2023). I illustrate

both parametric and semiparametric identification results via Monte Carlo experiments.

Finally, as an empirical application, I use my framework to analyze the entry decisions

of airlines in the U.S. I specify a standard parametric linear payoff model and examine

both the airlines’ strategic behaviors and their costly information acquisition. The results

indicate that the airlines’ baseline profits are negative, which creates an incentive for them

to acquire information about their profits. Furthermore, the results suggest that low-cost
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carriers tend to acquire less information than other airlines, which is consistent with their

business models that focus on cost efficiency and simplified operations. The analysis high-

lights how differences in firms’ information strategies can explain observed heterogeneity

in market entry behavior and competition.

This paper contributes to the literature on econometric discrete games (Bresnahan and

Reiss, 1991; Berry, 1992; Tamer, 2003; Seim, 2006; Sweeting, 2009; Ciliberto and Tamer,

2009; Aradillas-Lopez, 2010; Grieco, 2014; Magnolfi and Roncoroni, 2022; Koh, 2023; Xie,

2024). Many of these studies assume that players have complete or incomplete informa-

tion (or perfectly private information) among the players. A common feature across this

literature is that players’ information is exogenously specified by the econometrician. In

contrast, this paper assumes that players have incomplete information about their own

payoffs and does not impose any fixed information structure, instead allowing it to be

optimally chosen by players.

The discrete game model in this paper closely resembles recent work by Grieco (2014);

Magnolfi and Roncoroni (2022); Koh (2023), which relaxes standard information assump-

tions and leverages the information structure to model econometric discrete games un-

der flexible and weak information assumptions. These studies adopt a novel approach

to model player’s information with the signals and the distribution of signals, allowing

for a more flexible representation of players’ information. However, in these papers, the

information structure is still given exogenously by the econometrician and remains fixed.

In contrast, this paper endogenizes the information structure by allowing players to opti-

mally choose the information structure through the information strategy. By incorporating

the cost of information acquisition, this paper fills a gap in the recent literature and con-

tributes to a more realistic framework for modeling behavior and strategies in discrete

games.

This paper also builds on a literature on costly information acquisition and rational

inattention. Most of the recent papers theoretically analyze decision problems of a sin-

gle agent and determine the agent’s optimal behavior or decision (Matějka and McKay,

2015; Steiner et al., 2017; Fosgerau et al., 2020). Matějka and McKay (2015) show that a

rationally inattentive decision maker’s optimal decision rule follows a logit-like formula,

linking the rational inattention framework to discrete choice models. Fosgerau et al. (2020)

generalizes a decision problem in Matějka and McKay (2015), suggesting a generalized in-

formation cost function and proving that the rational inattention discrete choice problem
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and the additive random utility discrete choice model are equivalent under this informa-

tion cost function. Steiner et al. (2017) extends Matějka and McKay (2015)’s approach and

constructs a rationally inattentive decision maker’s problem in a dynamic environment.

While I share major assumptions on the setup of the decision problem with these papers,

my work extends the analysis to a multi-agent decision problem – discrete games – where

strategic interaction plays a key role.

The related literature on game theory with costly information acquisition or rationally

inattentive players includes Yang (2015, 2020); Denti (2023); Montes (2022). Yang (2015)

investigates a two-player, two-action coordination investment game, and Montes (2022)

focuses on attention-move games. In these papers, players have imperfect information

about the payoff-relevant state and optimally acquire information. Denti (2023) extends

this framework to a game where players acquire not only about the state but also each

other’s information. I adopt the structure of these theoretical models and expand them

into an empirical model. Thus, my model enables the quantitative analysis and estimation

of players’ information acquisition strategies using data. By bridging the gap between

theory and empirical application, the model enhances the ability to validate theoretical

predictions and better understand strategic behavior in environments characterized by

costly information acquisition.

The remainder of this paper is organized as follows. Section 2 sets up an econometric

model for discrete games with costly information acquisition. Section 3 provides the para-

metric and semiparametric identification. In Section 4, I present identification via Monte

Carlo experiments and discuss the estimation method. Section 5 applies my framework to

the U.S. airline industry to analyze the entry decisions. Finally, Section 6 concludes. All

proofs are in Appendix.

Notation. The boldface letters, e.g., X and x, represent vectors. The capital letters, e.g.,

Yi, denote random variables, while the lowercase letters, e.g., yi, represent their realized

values.

2 Model

In this section, I describe a general model of 2× 2 game with costly information acquisition

and provide a two-player entry game as a running example.

Let I = {1, 2} be the set of players, and let the players be indexed by i = 1, 2. By
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convention, I denote the rival of player i as −i or j. 1 Each player i simultaneously chooses

an action Yi from their action set, denoted by Yi. The action set contains two elements,

namely Yi = {0, 1}. Let Y = Y1 × Y2 represent the set of action profiles, and let Y =

(Y1, Y2)⊤ ∈ Y denote the action profile.

2.1 Payoff Structure

The payoff structure of player i is additively separable and given by the following equa-

tion:

Ui(Yi, Yj, ε i; X, Zi) =


ui(Yj; X, Zi) + ε i if Yi = 1,

0, if Yi = 0,
(1)

where X ∈ X ⊆ Rdx is a vector of market-specific variables and Zi ∈ Zi ⊆ Rdz is a

vector of player-specific variables. The payoff function for action Yi = 1, ui : Yj × X ×

Zi → R, can be specified parametrically or nonparametrically. The payoff shock ε i ∈ Ei

is unobservable to player i (and to the researcher) when making decisions, and I interpret

it as the uncertainty in payoffs. The payoff for action Yi = 0 is normalized to zero. In the

next example below, I demonstrate parametric and nonparametric payoff functions.

The vector of market-specific variables X is common to all players and has influence

on both players’ payoffs. On the contrary, the vector of player-specific variables Zi only

affects player i’s payoff, but not on rival’s payoff. As shown in the payoff function (1),

player i’s payoff depends on X and Zi, but not on Zj. The variable Zi is also referred to

as the player-specific payoff shifter in the literature and satisfies the exclusion restriction

assumption (Aradillas-Lopez, 2010; Bajari et al., 2010; Xie, 2024). The exclusion restriction

assumption plays a key role in the identification, which will be shown in the next sec-

tion. Examples of the market-specific variables X include market size, population, and

consumer preference, whereas examples of player-specific variables Zi include costs, tech-

nology, and product quality. I assume that the variables (X′, Z′
i, Z′

j)
′ are observable to all

players and the researcher. Furthermore, I do not restrict the support of each variables.

That is, the support of each variables of X and Zi can be either discrete or continuous.

Given the payoff structure (1), the payoff uncertainty arises from two sources; the ri-

val’s action Yj and the unobservable payoff shock ε i. When making a decision, each player

1I consider a two-player game, and denoting the rival by j does not violate the notation, as I can set j =

3 − i.
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does not observe either the realized rival’s action or the payoff shocks. In particular, the

unobservable payoff shock ε i directly affects the payoff, which creates an incentive for

player i to acquire information about it. At the same time, because rival’s decision is de-

termined strategically, player i needs to form a belief about rival’s behavior. Thus, the

uncertainty in payoffs makes player’s decision problem strategic since players weigh the

value of acquiring information about their own payoff shocks while anticipating how rival

will behave in equilibrium.

Since the main focus of this paper is on 2 × 2 games, the payoff function (1) can be

expressed in a standard form commonly used in the literature. Define two functions πi(·, ·)

and δi(·, ·) as follows:

πi(X, Zi) = ui(Yj = 0; X, Zi),

δi(X, Zi) = ui(Yj = 1; X, Zi)− ui(Yj = 0; X, Zi).

I refer to the function πi(·, ·) as the base payoff and the function δi(·, ·) as the strategic

effect. Models without a strategic effect can be considered as a single-agent model where

a player chooses action in isolation without strategic interaction. Thus, I focus on models

with non-zero strategic effect δi(·, ·) ̸= 0 for all X and Zi for each player i.

The sign of the strategic effect δi(·, ·) depends on the strategic incentives of the game.

The strategic effect is positive if the players want to coordinate, and the example is timing

of radio commercials (Sweeting, 2009). On the other hand, the strategic effect is negative

if the players want to differentiate, and the example is entry games. In a two-player entry

game, the base payoff πi(·, ·) corresponds to the monopoly profit, and the sum πi(·, ·) +

δi(·, ·) corresponds to the duopoly profit.

Using the above functions of the base payoff and the strategic effect, I can rewrite the

payoff function as follows:

Ui(Yi, Yj, ε i; X, Zi) =


πi(X, Zi) + δi(X, Zi) · 1(Yj = 1) + ε i, if Yi = 1,

0, if Yi = 0,
(2)

where 1(·) is the indicator function. Given the additive separable payoff shock ε i, the

original payoff function (1) can be transformed into a sum of the base payoff and the

competitive effect without imposing any restrictions. The analysis of the rest of this paper

is mainly based on the payoff function (2).
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Example 1 (A Two-player Entry Game). Consider a two-player entry game as in Bresna-

han and Reiss (1991) and Tamer (2003). There are two players, I = {1, 2}. The players are

firms, and each firm simultaneously chooses either to enter the market Yi = 1 or not to

enter the market Yi = 0. The profit function for firm i is defined by

Πi(Yi, Yj, ε i; X, Zi) =


πi(X, Zi) + δi(X, Zi) · 1(Yj = 1) + ε i, if Yi = 1,

0, if Yi = 0.

Firm i earns zero profit if it chooses not to enter Yi = 0. If firm i chooses to enter, it gains

monopoly profit if the rival stays out Yj = 0 or duopoly profit if the rival enters Yj = 1.

In this model, δi(·, ·) represents the competitive effect and is assumed to be negative. The

matrix of the payoff structure is summarized as the table 1.

Payoffs πi(·, ·) and δi(·, ·) may be specified either as nonparametric functions or as

parametric functions of covariates. The existing literature on entry games (Bresnahan

and Reiss, 1991; Tamer, 2003; Ciliberto and Tamer, 2009) assumes linear parametric payoff

functions, e.g.,

πi(X, Zi) = Xαi + Ziβi,

δi(X, Zi) = δi.

□

Y2 = 0 Y2 = 1

Y1 = 0 0, 0 0, π2(X, Z2) + ε2

Y1 = 1 π1(X, Z1) + ε1, 0 π1(X, Z1) + δ1(X, Z1) + ε1, π2(X, Z2) + δ2(X, Z2) + ε2

Table 1: The payoff matrix of 2 × 2 entry game in Example 1.

2.2 Information Structure

Every player i does not directly observe their own payoff shocks ε i and rival’s payoff shock

ε j when they make a decision. The payoff shock ε i is realized and observable to each player

i after the realization of action profile Y. While the players are uncertain about the exact

value of ε i, they have a prior belief on the payoff shocks ε = (ε i, ε j). The payoff shock ε is

distributed according to the distribution Fi. I refer to the distribution Fi as player i’s prior

belief. The following assumption summarizes the prior beliefs.
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Assumption 1. 1. The payoff shocks ε i and ε j are independent conditional on (X′, Z′
i, Z′

j)
′.

Moreover, for each player i, the payoff shock ε i is independent of (X′, Z′
i, Z′

j)
′.

2. The prior belief Fi(ε) is absolutely continuous with respect to the Lebesgue measure.

That is, the prior Fi(ε) is continuously differentiable and strictly increasing almost

everywhere over the support of ε.

I model players’ information through the signals they receive and the corresponding

distributions, following Magnolfi and Roncoroni (2022) and Koh (2023). Each player i

receives a private signal τX,Z
i ∈ T X,Z

i , where T X,Z
i denotes the set of all possible signals

which player i may receive.2 The private signal τX,Z
i may contain information about the

payoff shock ε, and its precision depends on the signal distribution.

Formally, the information structure SX,Z
i of player i is defined as a pair consisting of the

set of signals and the probability distributions over the signals:

SX,Z
i =

(
T X,Z

i , {PX,Z
i (·|ε) : ε ∈ E}

)
, (3)

where {PX,Z
i (·|ε)} represents the family of conditional distributions of signals given the

payoff shock ε. Each signal τX,Z
i ∈ T X,Z

i is realized according to its corresponding proba-

bility PX,Z
i (τX,Z

i | ε).

One advantage of utilizing the information structure is that it allows us to express any

type of information assumption from the existing literature. To illustrate the concept of

the information structure, consider the following two-player entry game example.

Example 2 (Example 1 continued). In Bresnahan and Reiss (1991), Tamer (2003), and Cilib-

erto and Tamer (2009), firm i not only observes his own payoff shock ε i, but also rival’s

payoff shock ε j. Thus, the firms have complete information.

The complete information can be interpreted as follows: each player i receives the exact

value of ε i through the signal τi. Formally, I can express the complete information structure

as follows. The signal space for each firm is defined by T1 = E1 × E2 and T2 = E1 × E2.

The distribution over signals for each firm is defined by

P1 (τ1 = (ε1, ε2) | ε1, ε2) = 1,

P2 (τ2 = (ε1, ε2) | ε2, ε1) = 1.

□
2Here, (X, Z) is a shorthand for (X, Zi, Zj).
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Example 3. I describe another information structure from Seim (2006), Aradillas-Lopez

(2010), and Bajari et al. (2010). Firm i only observes his own payoff shock ε i, but does

not receive any signals about their rival’s payoff shock ε j. In this situation, the firms have

perfectly private information or incomplete information. The signal space for each firm is

expressed as, for example, T1 = E1 × {−∞} and T2 = E2 × {−∞}. The distribution over

signals for each firm is

P1 (τ1 = (ε1,−∞) | ε1, ε2) = 1,

P2 (τ2 = (ε2,−∞) | ε2, ε1) = 1.

Alternatively, the signal spaces can be defined as T1 = E1 and T2 = E2. If the signal τi

and rival’s payoff shock ε j are conditionally independent given own payoff shock ε i, 3 the

distribution of the signals can be expressed as

P1 (τ1 = ε1 | ε1, ε2) = P1 (τ1 = ε1 | ε1) = 1,

P2 (τ2 = ε2 | ε2, ε1) = P2 (τ2 = ε2 | ε2) = 1.

This information structure is identical to the one in Seim (2006), Aradillas-Lopez (2010),

and Bajari et al. (2010). □

Example 4. I can also consider a situation where each firm i has no information about his

own payoff shock ε i. In this case, each firm’s signal space is singleton, e.g., Ti = {−∞} for

all realization of ε, and the distribution over the signal is, for i = 1, 2,

Pi
(
τi = −∞ | ε i, ε j

)
= 1.

□

2.3 Timeline of the Game

The timing of the Bayesian game is as follows. In period 1, two players enter the game, and

a vector of the covariates (x′, z′1, z′2)
′ is realized. In addition, the payoff shock ε is drawn

by nature. Each player has limited information about their payoffs due to the unobserved

payoff shock. In period 2, each player determines how much information to acquire and

pays information costs. I refer to this strategy as information strategy. In period 3, the

3Once player i’s own payoff shock εi is given, the signal τi does not provide any information about rival’s

payoff shock ε j.
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(x′, z′1, z′2)
′

are realized

Select an

information

strategy

Receive a

signal and

update beliefs

Choose

an action Yi

Payoffs Ui,

the shock εi

are observed

Figure 1: Timing of the Bayesian game

players receive private signals and update beliefs about the payoff shock. In period 4, the

players simultaneously choose actions Yi as a Bayesian expected utility maximizer. I refer

to this strategy as action strategy. In period 5, the players’ payoffs are realized. This is

summarized in the Figure 1.

2.4 Costly Information Acquisition

Players have prior beliefs about the payoff shock ε and choose how much information

to acquire to form posterior beliefs about the payoffs. However, acquiring information

is costly. According to the rational inattention theory (Matějka and McKay, 2015; Caplin

et al., 2019), players cannot gather and process all available information, as attention is

scarce and limited. Moreover, acquiring information requires both time and effort, further

adding to the cost of the information acquisition process.

Player i cannot influence the realization of ε, but can freely select which signals to

observe and their distributions. The precision of these signals depends on the chosen

distribution, and selecting more informative signals corresponds to acquiring more precise

information. However, there is a cost of acquiring information with more informative

signals being more costly. Given the prior belief Fi, observed covariates (X′, Z′)′, and the

information cost function, player i optimally chooses the information structure

SX,Z
i =

(
T X,Z

i , {PX,Z
i (·|ε)}

)
,

which reflects a trade-off between the benefits of acquiring precise information and the

costs of doing so. As a result, players obtain partially informative signals, which lie be-

tween fully informative and completely uninformative signals.
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In specifying information cost function, I adopt the entropy-based mutual informa-

tion function widely used in the rational inattention literature (Matějka and McKay, 2015).

First, I introduce the entropy function, which measures uncertainty or unpredictability

of an event. Next, I define the mutual information function using the entropy function.

The mutual information function measures the expected uncertainty reduction. Finally, I

define the information cost function, which is proportional to the mutual information.

Let X be a continuous random variable with the density function f (x). Following

(Cover and Thomas, 2006), the entropy of X is defined as follows 4:

H( f ) = H(X) = −
∫

x∈X
f (x) ln f (x)dx.

To measure the acquired information, I use the mutual information. Let X and Y be two

random variables with the joint density function f (x, y) and marginal density functions

f (x) and f (y). The mutual information I(X, Y) between two random variables X and Y is

defined as follows:

I(X, Y) =
∫
Y

∫
X

f (x, y) ln
(

f (x, y)
f (x) f (y)

)
dx dy

= H(X)− EY [H(X |Y)] .

The first term H(X) denotes the entropy of X, which measures uncertainty of X without

any information about Y. The second term H(X |Y) denotes the entropy of X given Y,

which represents the uncertainty of X once Y is known. Thus, the mutual information

I(X, Y) quantifies the expected uncertainty reduction of X due to the knowledge of Y,

which corresponds to the amount of information acquired. In other words, the mutual

information measures the decrease in prior uncertainty after information acquisition.

Finally, the information cost function C(X, Y) is defined to be proportional to the mu-

tual information, which measures the amount of information acquired. Formally, the in-

formation cost function is expressed as:

C(X, Y) = λ · I(X, Y),

where λ > 0 is unit cost of information and I(X, Y) is the mutual information between X

and Y.
4The random variable X corresponds to the payoff shock ε in the model. In the econometrics literature,

the payoff shock follows the normal distribution or the type 1 extreme value distribution. On the other hand,

theory literature assumes a discrete payoff shock in many cases. The entropy function with a discrete random

variable X is defined by H(X) = H(p) = ∑x∈X p(x) ln p(x) where p(x) is a probability mass function.
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Based on the above definitions, the information cost function in my setting is defined

as follows. First, I define the mutual information between the prior belief about the payoff

shock and the posterior belief after observing the signal

I(Fi, PX,Z
i ) = H(Fi(·))− Eτi

[
H(PX,Z

i (·|τX,Z
i ))

]
, (4)

where H(Fi(·)) is the entropy of the prior belief Fi(ε), and H(PX,Z
i (·|τX,Z

i )) is the entropy

of the posterior belief PX,Z
i (ε|τX,Z

i ) after observing the signal τX,Z
i . This measures the infor-

mation acquired about the payoff shock ε by observing the signal τX,Z
i .

Next, the information cost function is defined as:

Ci(Fi, PX,Z
i ) = λi · I(Fi, PX,Z

i ), (5)

where the unit cost of information λi > 0. The information cost function is proportional to

the mutual information I(Fi, PX,Z
i ). If a signal τX,Z

i does not contain any information about

the payoff shock ε or is independent of the payoff shock, the mutual information is zero,

I(Fi, PX,Z
i ) = 0, and so is the information cost Ci(Fi, PX,Z

i ) = 0. The following example

illustrates the mutual information and the information cost function.

Example 5. Consider a simple entry decision with unobservable payoff shocks given as ε ∈

{G, B}. Good market conditions are represented by ε = G, while bad market conditions

are represented by ε = B. Suppose that the firm’s prior belief about the payoff shock is

given as P(G) = 0.5 and P(B) = 0.5. The entropy of the prior belief is

H(P) = − ∑
x∈{G,B}

P(x) ln P(x) ≈ 0.693.

Now, consider two specific information structures S1 = ({0, 1}, P1) and S2 = ({0, 1}, P2).

Each information structure generates signals τ ∈ {0, 1}, where signal τ = 1 can be inter-

preted as a recommendation to enter the market, and τ = 0 as a recommendation not to

enter. Let the signal distributions of the S1 be

P1(τ = 1|G) = P1(τ = 0|B) = 0.8, P1(τ = 1|B) = P1(τ = 0|G) = 0.2,

and the signal distributions of the S2 be

P2(τ = 1|G) = P2(τ = 0|B) = 0.6, P2(τ = 1|B) = P2(τ = 0|G) = 0.4.

Applying Bayes’ rule, the posterior beliefs under S1 are

P1(G|1) = 0.8, P1(B|1) = 0.2,

P1(G|0) = 0.2, P1(B|0) = 0.8,
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and the mutual information is:

I(P, P1(·|τ)) = H(P)− Eτ[H(P1(·|τ))] ≈ 0.193.

Assuming the unit cost of information to be λ = 1, the information cost for S1 is:

C(P, P1) ≈ 0.193.

Similarly, the posterior beliefs under S2 are:

P2(G|1) = 0.6, P2(B|1) = 0.4,

P2(G|0) = 0.4, P2(B|0) = 0.6,

with the mutual information:

I(P, P2(·|τ)) = H(P)− Eτ[H(P2(·|τ))] ≈ 0.020,

and the information cost:

C(P, P2) ≈ 0.020.

Therefore, we conclude that the information structure S1 is more informative than S2.

This result arises because the signals in S1 are more correlated with the true market condi-

tions. Under S1, the signal correctly matches the underlying market condition with higher

probability than under S2. As a result, the posterior beliefs under S1 are more informative,

leading to a larger expected reduction in uncertainty. □

The intuition of the entropy-based information cost function can be explained as fol-

lows. Consider a situation where a player asks a series of binary questions (yes or no ques-

tions) at a cost per question to determine the outcome of the payoff shocks. The more ques-

tions he asks, the more information he can acquire, but also the higher the costs he pays.

This cost is proportional to the number of questions he asked and reduction in uncertainty

about the payoff shocks. Initially, the player faces a certain level of ex-ante uncertainty,

measured by the entropy of the prior belief. As he gathers information, this uncertainty

is reduced. The mutual information function precisely quantifies this average reduction

in uncertainty, reflecting how much the player learns about the true payoff shocks by ob-

serving a signal. Therefore, a higher mutual information value implies a greater reduction

in uncertainty, which, in this model, corresponds to a higher information cost.
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2.5 Strategy and Equilibrium

Each player’s decision problem involves two strategies. First, in period 2 of Figure 1, the

player chooses the information strategy. The information strategy is the selection of the

optimal information structure SX,Z
i = (T X,Z

i , PX,Z
i (· | ε i)) given the information cost func-

tion (5). 5 In other words, it is the choice of how precise the signals should be, balancing

the benefits of better information against the costs of acquiring it.

Second, once the player has chosen the optimal information structure, received the

signals τX,Z
i , the player updates his prior beliefs to form the posterior beliefs using Bayes’

rule:

PX,Z
i (ε i | τX,Z

i ) =
PX,Z

i (τX,Z
i | ε i) fi(ε i)

PX,Z
i (τX,Z

i )
,

where fi(·) is the density of the prior belief Fi(·). After forming the posterior beliefs

PX,Z
i (· | τX,Z

i ), the player chooses an action Yi. This stage corresponds to periods 3 and

4 in Figure 1. The action strategy is a mapping from the signal to the action space Yi,

denoted by σi(τ
X,Z
i ).

Formally, the action strategy is defined as the best response to the rival’s action strategy

given the optimal information structure and the beliefs about the rival’s action bj(Yj|X, Z):

σX,Z
i (τX,Z

i ) = Yi ⇐⇒ arg max
Yi∈Yi

E
εi∼PX,Z

i (·|τX,Z
i )

∑
Yj

Ui(Yi, Yj, ε i; X, Zi) · bj(Yj|X, Zj)

 ,

where the expectation is taken with respect to the posterior belief PX,Z
i (ε | τX,Z

i ). 6

One important result of decision-making with the costly information acquisition is that

the information strategy and action strategy can be combined into a single strategy under

optimal behavior (Matějka and McKay, 2015; Yang, 2015, 2020). Since information acqui-

sition is costly, players will avoid collecting useless or redundant information, which de-

termines the optimal signal space. In particular, the signal space of each player’s optimal

5Player i’s payoff shock εi is independent from ε j conditional on (X′, Z′)′ by Assumption 1. I further

assume that the signal τX,Z
i is independent from ε j given εi. That is, ε j is the private information of rival,

and the signal τX,Z
i does not provide any information about ε j once εi is given. Thus, the signal distribution

PX,Z
i (·|ε) can be simplified to PX,Z

i (·|εi).
6The expectation taken with respect to the posterior belief PX,Z

i (εi | τX,Z
i ) is:

∫
ε i

∑
Yj

Ui(Yi, Yj, εi; X, Zi) · bj(Yj|X, Zj)

 PX,Z
i (εi | τX,Z

i )dεi.

15



information structure contains at most as many signals as the number of elements of the

action set Yi. Moreover, under optimal behavior, each signal leads to exactly one action.

Distinguishing distinct signals that induce the same action is inefficient, as it requires more

costs but gives the same payoff. It is more efficient for the players to collapse such distinct

signals into one single signal. The following lemma from Matějka and McKay (2015); Yang

(2015, 2020) formalizes this property.

Lemma 1. Let SX,Z
i = (T X,Z

i , PX,Z
i ) be the optimal information structure for player i ∈ I .

Then, player i always plays pure strategies, and the signal space T X,Z
i contains no more

elements than those in Yi.

Proof. In the Appendix

Lemma 1 implies that the optimal information structure can be represented as

SX,Z
i =

(
Yi, {PX,Z

i (Yi|ε i)}
)

.

Here, the signal space contains two signals, i.e., T X,Z
i ≡ Yi = {0, 1}, with the correspond-

ing signal distribution PX,Z
i (Yi|ε i). Intuitively, receiving the signal τX,Z

i = 1 can be in-

terpreted as “accept/yes”, whereas τX,Z
i = 0 corresponds to “reject/no”. The player’s

optimal action strategy is simply to follow the received signal. Specifically, if player i

receives a signal of “accept/yes”, τX,Z
i = 1, with probability PX,Z

i (1|ε i), then the player

chooses action Yi = 1 as recommended. Conversely, if player i receives a signal of “re-

ject/no”, τX,Z
i = 0, with probability PX,Z

i (0|ε i), then the player chooses action Yi = 0 as

recommended. Thus, the action strategy is

σX,Z
i (τX,Z

i = Yi) = Yi.

Hence, once the optimal information structure is chosen, the action strategy is automati-

cally determined by following the signal. In this sense, it is without loss of generality to

regard player i’s strategy as focusing solely on the information strategy.

Each player i maximizes the ex-ante expected payoff less the information cost. Let

bj(Yj|X, Z) be player i’s belief about the rival’s action Yj. Using the result of Lemma 1,

player i’s ex-ante expected payoff maximization problem can be expressed as:

max
PX,Z

i :Ei→(0,1)

∫
εi

∑
Yi

∑
Yj

Ui(Yi, Yj, ε i; X, Zi) · bj(Yj|X, Z) · PX,Z
i (Yi|ε i)dFi(ε i)− Ci(Fi, PX,Z

i ) (6)
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subject to

Ci(Fi, PX,Z
i ) = λi I(Fi, PX,Z

i ), ∑
Yi

PX,Z
i = 1, PX,Z

i (Yi|ε) ≥ 0, for all i ∈ I , ε i ∈ Ei.

The solution to the optimization problem has been well established in Matějka and

McKay (2015) and Caplin et al. (2019). 7 Proposition 1 below characterizes the player’s

optimal strategy.

Proposition 1. Let PX,Z
i (Yi|ε i) be a strategy of player i in the decision problem (6). Then

the strategy PX,Z
i (Yi|ε i) is optimal if and only if it satisfies the following:

PX,Z
i (Yi|ε i) =

PX,Z
i (Yi) exp

(
∑Yj

Ui(Yi, Yj, ε i; X, Zi)bj(Yj|X, Z)
)1/λi

∑Yi′
PX,Z

i (Y′
i ) exp

(
∑Yj

Ui(Y′
i , Yj, ε i; X, Zi)bj(Yj|X, Z)

)1/λi
, a.s. (7)

with PX,Z
i (Yi) =

∫
εi

PX,Z
i (Yi|ε i)dFi(ε i) > 0.

Proof. In the Appendix

Next, I formally define the equilibrium of the game in the context of costly information

acquisition. The solution concept is the Bayesian-Nash equilibrium (BNE), which is the

standard in the literature on incomplete information games.

Definition 1. A Bayesian-Nash equilibrium (BNE) is a profile of strategies (PX,Z
i (Yi))i∈I

such that for each player i ∈ I with j ̸= i,

1. Given beliefs about the rival’s action bj(Yj|X, Z), the strategy PX,Z
i solves the maxi-

mization problem (6).

2. Beliefs are consistent. That is, bj(Yj|X, Z) = PX,Z
j (Yj).

The equilibrium concept in Definition 1 captures the strategic interactions between

players in a game with costly information acquisition. First, each player’s strategy in a

Bayesian-Nash equilibrium optimally balances the expected payoff from each action with

the costs of acquiring information, conditional on the beliefs about rival’s actions. Sec-

ond, consistency of beliefs ensures that each player’s expectation about the rival’s strate-

gies aligns with the actual equilibrium strategies. Finally, the equilibrium defined here

7Matějka and McKay (2015) established the necessary conditions for the rational inattention optimization

problem, but did not prove sufficiency. Subsequently, Caplin et al. (2019) derived the necessary and sufficient

conditions using the concept of consideration sets.
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generalizes the standard BNE concept to account for endogenous information acquisition,

providing a foundation for empirical estimation of discrete games with costly information.

In the next subsection, I focus on the equilibrium in the choice probability space, which

facilitates the characterization of players’ strategies and the computation of equilibrium

outcomes.

2.6 Equilibrium Existence and Uniqueness

Given the equilibrium strategies defined above, it is often convenient to represent the

equilibrium in terms of conditional choice probabilities (CCPs), which aggregate over the

unobserved payoff shocks. Associated with each player’s equilibrium strategy, the CCP

Pi(Yi|X, Zi, Zj) is defined as

Pi(Yi|X, Zi, Zj) ≡ PX,Z
i (Yi) =

∫
εi

PX,Z
i (Yi|ε i)dFi(ε i). (8)

Since the action is binary, the CCPs can be simplified to a single probability of choosing

action Yi = 1:

Pi(X, Zi, Zj) ≡ Pi(Yi = 1|X, Zi, Zj).

Moreover, the equilibrium condition can be expressed as a fixed-point equation. Let

P(X, Z) = (P1(X, Z), P2(X, Z))′ denote the vector of conditional choice probabilities. For

i, j ∈ I with j ̸= i, define

ψi(pi, pj, X, Z) =
∫

εi

pi exp
(
πi(X, Zi) + δi(X, Zi) · pj + ε i

)1/λi

pi exp
(
πi(X, Zi) + δi(X, Zi) · pj + ε i

)1/λi + 1 − pi

dFi(ε i). (9)

Stacking the two functions, define the mapping Ψ : [0, 1]2 → [0, 1]2 as:

Ψ(p1, p2, X, Z) =

ψ1(p1, p2, X, Z)

ψ2(p2, p1, X, Z)

 . (10)

From equations (7) and (8), the equilibrium choice probabilities satisfy

Pi(X, Z) = ψi(Pi(X, Z), Pj(X, Z), X, Z).

Thus, the equilibrium conditional choice probabilities are characterized as the fixed-point

solution of

P(X, Z) = Ψ(P(X, Z), X, Z). (11)

The following proposition establishes existence of a Bayesian Nash equilibrium. The proof

follows from Brouwer’s fixed-point theorem.

18



Proposition 2. Under the Assumption 1, there exists a Bayesian Nash equilibrium of the

games with costly information acquisition.

Proof. In the Appendix

As shown in Figure 2, the multiple solutions to equation (11) may arise, a common

feature in discrete choice games. Aradillas-Lopez (2010) investigates the conditions under

which the equilibrium is unique. Building on Gale-Nikaido conditions (Gale and Nikaido,

1965), Aradillas-Lopez (2010) derives the sufficient conditions for equilibrium uniqueness.

The following proposition formalizes uniqueness conditions in the context of the game

with costly information acquisition.

Proposition 3. Let ∇PΨ(P(X, Z), X, Z) denote the Jacobian of (9) evaluated at the equilib-

rium choice probabilities P(X, Z). The solution to the equation

P(X, Z)− Ψ(P(X, Z), X, Z) = 0

is unique if no principal minors of the matrix

I2×2 −∇PΨ(P(X, Z), X, Z) (12)

are zero, where I2×2 is the 2-dimensional identity matrix. That is,

1. the (1, 1) element of the matrix (12) is positive, i.e., 1 − ∂ψ1

∂P1

∣∣∣∣
P(X,Z)

> 0,

2. the (2, 2) element of the matrix (12) is positive, i.e., 1 − ∂ψ2

∂P2

∣∣∣∣
P(X,Z)

> 0, and

3. the determinant of the matrix (12) is positive, i.e., det
(

I2×2 −∇PΨ(P(X, Z), X, Z)
)
>

0.

The third condition in Proposition 3 is automatically satisfied if δ1(X, Z1)× δ2(X, Z2) <

0, or if one player’s action is strategic substitute and the other’s is strategic complement.

The panel (c) in Figure 2 illustrates this case. The sign of δi(X, Zi) determines the slope

of player i’s best response function. A positive δi(X, Zi) indicates that the best response

function is increasing, while a negative δi(X, Zi) indicates that it is decreasing. Thus, when

the two slopes have opposite signs, the best response functions are monotone in opposite

directions and intersect at one point.
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Figure 2: Unique Equilibrium and Multiple Equilibria

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
2

Player 2 Best Response

Player 1 Best Response

(a) Multiple Equilibria, δ1 · δ2 > 0
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(b) Unique Equilibrium, δ1 · δ2 > 0
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(c) Unique Equilibrium, δ1 · δ2 < 0

Notes: The figures illustrate the best response functions. The horizontal axis represents player 1’s

choice probability P1(X, Z), and the vertical axis represents player 2’s choice probability P2(X, Z).

The dotted line represents player 1’s best response function, and the solid line represents player 2’s

best response function. The intersection points of the two lines indicate the equilibria of the game.

3 Identification

In this section, I describe the identification result of model primitives. First, I present the

data generating process and the identification conditions. Next, I demonstrate that the

model primitives, the payoff function, can be identified.
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3.1 Data Generating Process and Identification Conditions

Suppose that an econometrician observes an independent dataset of M different markets,

indexed by m = 1, 2, . . . , M. The dataset {(y′
m, x′m, z′1m, z′2m)

′}M
m=1 consists of the realized

action profiles ym, vectors of market-specific variables xm, and a vector of player-specific

variables zim for each market m = 1, 2, . . . , M. I assume that both the market-specific and

player-specific variables are observable to the econometrician.

Assumption 2. The realizations of the vector {(y′
m, x′m, z′1m, z′2m)

′}M
m=1 are independent and

identically distributed across markets and observable to the econometrician.

Let Zik denote the k-th variable in Zi, and let Zi,−k = (Zi1, . . . , Zi,k−1, Zi,k+1, . . . , Zidz)
′

denote the vector of Zi excluding Zik. I assume that the variable Zik varies over its support

Zik, conditional on player i’s other variables Zi,−k, the rival’s variables Zj, and the market-

specific variables X.

The supports of each Zi ∈ Zi ⊆ Rdz can be either discrete or continuous. If Zi has a

continuous support, then at least one of player-specific variables, Zik for some k, is contin-

uously distributed for dz ≥ 1. In other words, the support of Zik contains a non-degenerate

interval.

I further assume that the vector of player-specific variables Zi enters only player i’s

payoff function and is excluded from the rival’s payoff function. Changes in Zi affect only

player i’s payoff and do not directly affect the rival’s payoff. This assumption plays a key

role in identification and is referred to as exclusion restriction. Assumption 3 summarizes

the conditions on the player-specific variable Zi.

Assumption 3. 1. The player-specific variable Zi can be discrete or continuous, and Zi

enters player i’s payoff but is excluded from the payoffs of other player.

2. The variable Zik varies over its support Zik, conditional on (X′, Z′
i,−k, Z′

j)
′.

Next, I assume that the equilibrium conditional choice probabilities (CCPs) can be

consistently estimated or identified from the data. Specifically, each player’s conditional

choice probabilities Pi(X, Zi, Zj) are assumed to be known to the econometrician. As de-

fined in equation (8), the CCPs vary with both player-specific variables (Z′
i, Z′

j)
′.

Assumption 4. The conditional choice probabilities Pi(X, Zi, Zj) vary with (X′, Z′
i, Z′

j)
′.

Furthermore, the CCPs are identified or consistently estimated from the data.
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Finally, I derive the relationship between equilibrium CCPs and the model primitives.

From the equations (9) through (11), the equilibrium CCPs satisfy

Pi(X, Z) =
∫

εi

Pi(X, Z) exp
(
πi(X, Zi) + δi(X, Zi)Pj(X, Z) + ε i

)1/λi

Pi(X, Z) exp
(
πi(X, Zi) + δi(X, Zi)Pj(X, Z) + ε i

)1/λi + (1 − Pi(X, Z))
dFi(ε i),

(13)

for i, j ∈ I with j ̸= i. The terms in the exponent represent player i’s expected payoff, and

the deterministic component of the expected payoff is

EUi(X, Z) = πi(X, Zi) + δi(X, Zi)Pj(X, Z). (14)

Since the integrand of (13) is strictly increasing in EUi(X, Z) and the prior belief Fi(ε i) is

bijective, there exists a strictly increasing function Gi(·) such that

Pi(X, Z) = Gi

(
1
λi

EUi(X, Z)
)
= Gi

(
1
λi

(
πi(X, Zi) + δi(X, Zi)Pj(X, Z)

))
. (15)

This equation shows that the equilibrium CCPs can be expressed as a function of the play-

ers’ deterministic components of expected payoffs, providing a key link between the CCPs

and the underlying structure of the model.

3.2 Identification Result: Semiparametric Model

Given these assumptions, I now turn to the identification of model primitives. In this

subsection, the model primitives — the base payoffs πi(·) and the competitive effects δi(·)

— are nonparametric functions, and I demonstrate that they are identified.

Fix an arbitrary realization of market-specific variables and player i’s variables, X =

x and Zi = zi. Given the equilibrium choice probabilities Pi(x, zi, Zj), I can apply the

mapping in equation (15) to recover EUi(x, zi, Zj). Recall that Gi(·) is a bijective function

and hence invertible. Therefore,

G−1
i (Pi(x, zi, Zj)) =

1
λi

(
πi(x, zi) + δi(x, zi)Pj(x, Zj, zi)

)
. (16)

Given that λi > 0, model primitives {πi(·), δi(·), λi} are only identified up to scale.

Multiplying πi(·), δi(·) and λi by a positive constant c > 0 does not change the right-hand

side of equation (16). I therefore normalize the unit cost of information λi to one. Under

this normalization, the model primitives, πi(·), and δi(·) can be identified.

A necessary condition for identification of πi(·) and δi(·) is that, for each x and zi, there

exist at least two distinct points, z1
j and z2

j in the support of Zj conditional on x and zi. A
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sufficient condition for identification is that the two distinct points satisfy the following:

Pj(x, z1
j , zi) ̸= Pj(x, z2

j , zi).

By Assumption 4, the conditional choice probabilities Pi(x, zi, Zj) and Pj(x, Zj, zi), vary

sufficiently with Zj, so the inequality condition holds. Therefore, variation in Pi(x, zi, Zj)

and Pj(x, Zj, zi) across Zj allows the identification of πi(·) and δi(·).

Proposition 4. Suppose that Assumptions 1 through 4 hold and the unit cost of informa-

tion λi is normalized to 1. Suppose further that, for each x ∈ X and zi ∈ Zi, there exist at

least two distinct points, z1
j and z2

j in the support of Zj conditional on x and zi, such that

Pj(x, z1
j , zi) ̸= Pj(x, z2

j , zi).

Then, for each i ∈ I , the base payoff πi(X, Zi) and the competitive effects δi(X, Zi) are

nonparametrically identified.

Proof. In the Appendix

The proposition shows that, under the maintained assumptions and sufficient varia-

tion in Zj, which induces variation in Pi(x, zi, Zj) and Pj(x, Zj, zi), both the structural base

payoffs and the strategic effects can be nonparametrically identified from the equilibrium

choice probabilities. Intuitively, variation in Zj changes both players’ equilibrium choice

probabilities without directly affecting the payoff functions of player i. By observing how

player i’s choice probabilities respond to changes in Zj, the payoff primitives can be iden-

tified even in the presence of costly information acquisition.

3.3 Identification Result: Parametric Model

In this subsection, the model primitives are specified as parametric functions, and I show

that the parameter vector is point identified. Let the payoff function πi(·) and the compet-

itive effect δi(·) be defined by parametric functions as follows:

πi(X, Zi) = Xβi + Ziγi,

δi(X, Zi) = δi,

where βi ∈ Rdx , γi ∈ Rdz , and δi ∈ R are constant parameters. The competitive effect δi

may also take a linear functional form, such as δi(X, Zi) = Xαi + Ziκi, where αi ∈ Rdx and

κi ∈ Rdz are constant parameters.
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The deterministic expected payoff (14) can be expressed as

EUi(X, Z, θi) = Xβi + Ziγi + δi · Pj(X, Z, θj),

where θi = (β′
i, γ′

i , δi)
′ is the parameter vector.

To identify the parameters, I adopt the strategy known as identification at infinity fol-

lowing Tamer (2003). Identification requires an assumption that there exists one variable

Zik such that γik ̸= 0 and has an everywhere positive Lebesgue density conditional on

Zi,−k. This assumption ensures that the variation in Zik can be used to identify the effect of

Zik on the payoff function, which is crucial for point identification of the parameter vector.

Moreover, this assumption is standard in the literature on discrete choice games (Tamer,

2003; Ciliberto and Tamer, 2009). Under the assumption, the parameter vector θ = (θ′i , θ′j)
′

is point identified.

Proposition 5. Suppose that Assumptions 1 through 4 hold. I further assume that there

exists one variable Zik such that γik ̸= 0 and has an everywhere positive Lebesgue density

conditional on Zi,−k. Then the parameter vector θ is point identified if the matrix (X, Zi)

has full column rank for all i ∈ I .

Proof. In the Appendix

This result formalizes the point identification of the parametric version of the model.

While the nonparametric setting established identification of the underlying payoff prim-

itives, this proposition demonstrates that, under rank conditions, the finite-dimensional

parameter vector θ can be uniquely identified from the equilibrium choice probabilities.

Hence, the model provides a fully identified structure that can be directly estimated using

standard econometric estimation methods.

4 Monte Carlo Experiments

In this section, I illustrate the identification results in the Monte Carlo experiments.

4.1 Parametric Model

I conduct a Monte Carlo experiment to illustrate the parametric identification results of

games with costly information acquisition. I construct a sample of M independent mar-

kets with two players and two actions. The payoff function for each player is linear in
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parameters, and the payoff for each player from Yi = 1 is given by

U1(Y2, ε1; Z1, θ) = 1.8 + 0.5Z1 − 1.3 · 1(Y2 = 1) + ε1,

U2(Y1, ε2; Z2, θ) = 1.6 + 0.8Z2 − 1.3 · 1(Y1 = 1) + ε2,

where θ is the vector of parameters. The payoff from Yi = 0 is zero for both players.

The true parameters in the data generating process θ0 = (β0
1, γ0

1, β0
2, γ0

2, δ0
1 , δ0

2) are given by

(1.8, 0.5, 1.6, 0.8,−1.3,−1.3). I assume no market-specific variables in this exercise, and the

player-specific variable Zi is randomly drawn from the uniform distribution with support

[0, 1]. Each player’s prior belief Fi(ε i) follows the normal distribution with mean zero and

variance 4.

The sample data are generated from the unique equilibrium in each market conditional

on (Z1, Z2), and I estimate the model using the maximum likelihood (ML) with the con-

strained optimization approach (Su, 2014). One challenge in estimating discrete games

with incomplete information is the potential existence of multiple equilibria, which makes

computing all the equilibria often infeasible. As a result, the ML estimation is often de-

manding and computationally burdensome. In this exercise, however, the equilibrium is

unique by construction, and thus the ML estimation is feasible. Among the alternative

estimation methods, such as two-step estimators and pseudo-likelihood estimators, the

constrained ML approach is known to be efficient (Su, 2014).

Let Pm = (P1m, P2m)′ be a vector of choice probabilities in market m. Given the parame-

ter vector θ and the data zm = (z1m, z2m)′ and ym = (y1m, y2m)′, the log likelihood function

in market m is

ℓm(ym, zm, Pm, θ) = ∑
i=1,2

yim log (Pim) + (1 − yim) log (1 − Pim) .

The log likelihood for all markets m = 1, 2, . . . , M is

L(P, θ) =
M

∑
m=1

ℓm(ym, zm, Pm, θ), (17)

where P = (Pm)M
m=1 is the vector of choice probabilities for each market.

The probability P in the equation (17) is not necessarily an equilibrium choice prob-

ability. I impose the Nash equilibrium restriction (11) as a constraint. Hence, the ML

estimation is to solve the maximization problem:

max
P,θ

L(P, θ) s.t. P − Ψ(P, z, θ) = 0. (18)
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I report the estimation results in Table 2. The table shows the result for samples of

M = 1, 000 markets and R = 300 repetitions. The result displays strong evidence of

convergence of each estimates to the true parameters.

Parameter True Value Mean Median S.D. RMSE Mean Bias Median Bias

β1 1.8 1.7803 1.7432 0.4633 0.4638 -0.0197 -0.0568

γ1 0.5 0.5050 0.5050 0.1558 0.1559 0.0050 0.0050

β2 1.6 1.6172 1.6127 0.3679 0.3683 0.0172 0.0127

γ2 0.8 0.8060 0.8092 0.1535 0.1537 0.0060 0.0092

δ1 -1.3 -1.2754 -1.2194 0.5847 0.5853 0.0246 0.0806

δ2 -1.3 -1.3241 -1.3207 0.4469 0.4476 -0.0241 -0.0207

Table 2: Monte Carlo Results: Parametric Model, M = 1000

4.2 Semiparametric Model

Next, I illustrate the semiparametric identification results of games with costly information

acquisition. In this Monte Carlo experiment, the maximum likelihood estimation by the

method of sieve (Chen, 2007) in implemented to estimate nonparametric functions of the

base return and the competitive effect.

The data generating process mainly follows Xie (2024). I construct a sample of M

independent markets. I consider two identical players in each market. The payoff function

for each player from Yi = 1 is given by

πi(Zi) = 3 − log(1 + 2Zi),

δi(Zi) = − 4 exp(Zi)

1 + exp(Zi)
,

where Zi is randomly drawn from the uniform distribution with the support [0, 3]. The

payoff from Yi = 0 is zero for both players. Each player’s prior belief Fi(ε i) follows from

the uniform distribution with the support [−5, 5].

Let θi = (πi, δi) be model primitives. θi contains all unknown functions which is to be

estimated by the sieve MLE. Moreover, each element of the model primitives θi satisfies

πi ∈ Π and δi ∈ ∆, where Π and ∆ are the spaces of functions πi and δi. The approximating

spaces, i.e. sieves, are represented by ΠM ⊆ Π and ∆M ⊆ ∆, and the sieve space for the

model primitive θi is ΘM = ΠM × ∆M.
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I use the space of polynomials as the sieve space for both πi and δi. The sieve spaces

are

ΠM =

{
dπ,M

∑
l=0

βl · Zl
i

∣∣∣∣∣ βl ∈ R

}
, ∆M =

{
dδ,M

∑
l=0

βl · Zl
i

∣∣∣∣∣ βl ∈ R

}
.

The equilibrium choice probabilities follow from (15)

Pi(Zi, Zj; θi) = Gi
(
πi(Zi) + δi(Zi)Pj(Zj, Zi; θj)

)
, (19)

where Gi(·) is the inverse of the uniform distribution with the support [−5, 5].

Under the regularity conditions (Chen, 2007), the sieve MLE is consistent, and the

model primitives θi can be estimated by maximizing the following log-likelihood func-

tion

max
θi∈ΘM

2

∑
i=1

M

∑
m=1

yim log (Pim(zi, z3−i,m, θi)) + (1 − yim) log (1 − Pim(zim, z3−i,m, θi)) (20)

Figure 3 shows the estimation results. I use the sample of M = 400 independent

markets, and repeated R = 100 times. The degree of polynomial was set to 2. The blue

solid lines in each panel indicate the true value of πi and δi. The red solid lines in each

panel represent the averages of the estimates from 100 repetition. The red dashed lines

show 90% confidence intervals. The sieve MLE give estimates that are consistent and

close to the true model primitives.

5 Empirical Application

In this section, I apply my model to the market-level entry decisions of airline firms in the

U.S. airline industry.

5.1 Motivation

I investigate the U.S. airline industry as an empirical application. In this industry, a market

is defined as a city pair. Each airline’s entry decision involves deciding whether or not to

serve a route between two cities.

In contrast to much of the existing literature, my model assumes that firms do not per-

fectly know their profits at the time they make their entry decisions due to payoff shocks.

In previous models, firms are assumed to observe their payoff shocks, and thus their prof-

its when making decisions. However, in my model, the uncertainty arising from unob-

served payoff shocks induces firms to acquire information.
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(a) Player 1’s base return (b) Player 1’s competitive effect

(c) Player 2’s base return (d) Player 2’s competitive effect

Figure 3: Monte Carlo Results: Semiparametric Model, M = 400.
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The uncertainty in profits, and thus the need for information acquisition, stems from

three sources. First, airlines do not know the exact demand for a route before selling flight

tickets and therefore need to gather information to forecast it. If a firm serves a route that

attracts few passengers, costs can exceed revenue, leading to negative profits. In such a

case, the firm would be better off not entering the market. Thus, gathering information

about future demand plays a key role in their decision making.

Second, the operational feasibility at airports is important for airlines’ entry decisions.

This includes factors such as airport infrastructures, slot availability, and ground handling

capacities at a certain airport. Assessing the operational feasibility might require airlines

to acquire information from airport authorities.

Lastly, regulatory environments are a crucial factor in airlines’ decisions. To provide

services between two cities, an airline needs to comply with the local aviation regulations

and acquire information about them. Moreover, taxes and fees can differ across airports,

and the firms should be aware of these prior to the operation to make an optimal decision.

5.2 Data

My primary dataset on the airline industry comes from Kline and Tamer (2016) 8. Ac-

cording to them, the data are collected from the second quarter of the 2010 Airline Origin

and Destination Survey (DB1B). The unit of observation is a market, and each observa-

tion contains information on airlines’ market entry decisions and the market-specific and

firm-specific explanatory variables.

The data contain 7, 882 markets indexed by m = 1, 2, . . . , 7882, and each market is

defined as routes between two airports irrespective of stopping. As in Kline and Tamer

(2016), I consider the entry behavior of two players: (1) low-cost carriers (LCC) 9, and (2)

other airlines (OA) 10. In the following analysis, the players LCC and OA are treated as a

single player, and YLCC = 1 (respectively, YOA = 1) means that at least one airline firm in

LCC (respectively, OA) serves the market. On the contrary, YLCC = 0 (respectively, YOA =

0) means that none of firms in LCC (respectively, OA) serves the market. The uncondi-

8Chen et al. (2018) and Gu et al. (2025) use the same dataset and apply their models to airline entry game.

In addition, Kline and Tamer (2024) uses a similar dataset, except that the data are collected from the year

2023.
9According to Kline and Tamer (2016), AirTran, Allegiant Air, Frontier, JetBlue, Midwest Air, Southwest,

Spirit, Sun Country, USA3000, and Virgin America are aggregated into one single player, LCC.
10All airlines other than low-cost carriers are aggregated into one single player, OA.
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tional choice probabilities are (P̂r(0, 0), P̂r(1, 0), P̂r(0, 1), P̂r(1, 1)) = (0.15, 0.07, 0.61, 0.16),

where P̂r(YLCC, YOA) is the sample frequency of the market outcome (YLCC, YOA).

Two explanatory variables are used in my empirical analysis. The first explanatory

variable is a market- and firm-specific variable which has been used in many papers: mar-

ket presence (Berry, 1992; Ciliberto and Tamer, 2009). The market presence, denoted by

Zim, is a proxy for a scale of operation of airline i in market m (Berry, 1992). Moreover, the

market presence is a measure of the airline’s market power and profitability since a large

scale of operation may deter entry of other airlines (Gu et al., 2025). The market presence

Zim varies across airlines and only enters airline i’s profits. This variable satisfies the ex-

clusion restriction and is essential for the payoff identification. The market presence of

airline i at a given market m is computed as follows. For each airline and for each airport,

the number of routes served by the airline from the airport is counted. Next, the pro-

portion of routes served from the airport is calculated by dividing the number of routes

served by the airline by the total number of routes from that airport by all airlines. The

market presence for each airline at a given market m is the average of these proportions

at two endpoints of the market. Since there are two players in my analysis, the market

presence variable is the maximum of market presence for each airline in the group of LCC

and OA.

The second explanatory variable is market-specific variable: market size. The market

size, denoted by Xm, is defined by the population of the endpoints 11. Both LCC and OA in

the same market have the same market size, and the market size varies across the markets.

In the analysis, the unit of market size is billions of people.

Table 3 reports the summary statistics of my data. The decision variables are binary,

and both the market presence and market size are continuous variables. Apparently, the

entry probability of OA is about 3 times higher than LCC. Moreover, the airport presence

of OA, a measure of operation scale, is about 7.9 times higher than LCC. On average,

markets that LCC serves tend to be larger than the markets that OA serves.

11The original data source, Kline and Tamer (2016), does not explicitly specify which of the two endpoints’

population was used, nor does it clarify the source of the population data. However, Gu et al. (2025), which

uses the same dataset, mentions that the population data is collected from the U.S. Census Bureau in 2010 and

the market size is defined by the maximum of the two endpoints’ population.
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Table 3: Summary Statistics

Mean Std. Dev. Median Max Min Obs.

LCC Entry 0.2322 0.4222 0 1 0 7,882

OA Entry 0.7742 0.4182 1 1 0 7,882

Market Presence 0.1986 0.1596 0.1000 0.5007 0 15,764

Market Presence (LCC) 0.0447 0.0204 0.0429 0.1128 0 7,882

Market Presence (YLLC = 1) 0.0676 0.0154 0.0677 0.1128 0.0149 1,830

Market Presence (YLLC = 0) 0.0377 0.0161 0.0386 0.1053 0 6,052

Market Presence (OA) 0.3525 0.0562 0.3581 0.5007 0.0349 7,882

Market Presence (YOA = 1) 0.3646 0.0437 0.3652 0.5007 0.1318 6,102

Market Presence (YOA = 0) 0.3111 0.0723 0.3279 0.4655 0.0349 1,780

Market Size 1,229,550 648,935 1,067,422 4,177,793 171,466 7,882

Market Size (YLLC = 1) 1,310,375 662,521 1,159,922 4,044,754 231,001 1,830

Market Size (YLLC = 0) 1,205,111 642,828 1,046,574 4,177,793 171,466 6,052

Market Size (YOA = 1) 1,286,312 646,809 1,131,214 4,177,793 173,002 6,102

Market Size (YOA = 0) 1,034,966 617,953 874,540 4,177,793 171,466 1,780

5.3 Preliminary Analysis

Before estimating the structural model, I conduct a preliminary analysis using simple Pro-

bit regressions to examine the data patterns. The Probit regression equation is given by

the following equation:

Yim = 1
{

βcons + βpresZim + βsizeXm + δYjm + ε im ≥ 0
}

, (21)

where the error term ε im follows the standard normal distribution. In simple Probit re-

gressions, each observation represents a specific player within a particular market. The

dependent variable is entry decisions, Yim ∈ {0, 1}. I regress the binary decisions on firm-

specific and market-specific variables.

Table 4 reports the estimation results from the Probit regressions. The coefficients indi-

cate the impact of each variable on the underlying latent profit for the entry decision. The

estimation results are reasonable in two ways. First, both market presence and market
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Table 4: Estimation results from Probit regressions

(1) (2) (3)

Market Presence 5.6688 5.7304 5.3937

(0.0757) (0.0768) (0.0899)

Market Size 0.2396 0.2582

(0.0182) (0.0185)

Competitive Effect -0.1936

(0.0277)

Constant -1.1020 -1.4030 -1.2632

(0.0186) (0.0300) (0.0358)

Log Likelihood -7648.11 -7560.80 -7536.69

Observations 15,764 15,764 15,764

Notes: This table reports the estimation results of the Probit regressions. Each observation represents a

specific player within a particular market. Standard errors are in the parentheses.

size are positively correlated with the entry decisions. This result is consistent with the

intuition that an airline with a large operational scale in a large demand market is more

likely to serve the route. Second, the competitive effect is negatively correlated with the

entry decisions, indicating that a rival’s entry reduces the player’s profits.

Although the preliminary analysis result is consistent with the intuition on airlines’

entry decisions, the estimation results may be biased. In the above analysis, the airlines’

profits are assumed to be perfectly observable to airlines. As I have discussed in the pre-

vious section, the profits may not be perfectly known to airlines due to uncertainty, oper-

ational feasibility, and regulatory environments. I model the structural entry game with

costly information acquisition to properly incorporate strategic interactions in the next

subsection.

5.4 Structural Entry Game Analysis

I develop a standard parametric entry game that builds on the existing literature by adding

costly information acquisition. The two firms are LCC and OA, and they choose a binary
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action Yim ∈ {0, 1} where Yim = 1 if firm i enters a market m and Yim = 0 if i stays out. The

profit function for firm i is specified as follows:

Uim(Yim, Yjm, ε im; Xm, Zim, θ) = Yim

(
βcons

i + β
pres
i Zim + βsize

i Xm + δiYjm + ε im

)
, (22)

where θ is the vector of parameters of interest.

Firm i’s profit from entering the market is βcons
i + β

pres
i Zim + βsize

im Xm + δiYjm + ε im where

Zim represents the market presence, Xm represents the market size, Yjm represents rival’s

entry, and ε im is the payoff shock. The payoff shock ε im is unobserved by firm i (and also by

rival j and econometricians) when the firm i makes entry decision. The profit from staying

out is normalized to zero. I assume that each player’s prior belief about ε im follows an

i.i.d. standard normal distribution. This is because the normal distribution describes the

maximum entropy among all distributions with the same variance. Given this prior belief,

firms make entry decisions under the condition of maximum uncertainty.

I estimate the parameters by using the two-step estimation method due to multiple

equilibria. Under the multiple equilibria, a vector of parameters θ corresponds to multiple

choice probabilities. Since I do not know which choice probability is selected by the firms

in the data, I estimate the choice probabilities in the first step. In the second step, given the

choice probabilities, I estimate the parameters by maximizing the pseudo log-likelihood

function.

In the first step, I nonparametrically estimate the conditional choice probabilities. I de-

note the conditional choice probability of entering the market as Pim(xm, zm) = Pim(Yim =

1|xm, zm). Since the entry decision is binary, the conditional choice probability of staying

out can be expressed as 1− Pim(xm, zm). The conditional choice probabilities are estimated

using sieve method (Chen, 2007). Let qκ(xm, zm) = (q1(xm, zm), . . . , qκ(xm, zm))⊤ be the

κ × 1 vector of basis functions with degree κ. The sieve estimator of the conditional choice

probabilities are:

P̂im(xm, zm) =
exp(qκ(xm, zm)′γ̂)

1 + exp(qκ(xm, zm)′γ̂)
, (23)

where γ̂ is the maximizer of the log likelihood function

γ̂ = arg max
γ

M

∑
m=1

[
1 {Yim = 1} qκ(xm, zm)

′γ − ln
(
1 + exp(qκ(xm, zm)

′γ)
)]

. (24)

In the first step estimation, I set the degree κ = 3. The sieve estimator P̂im(xm, zm) will

converge to the true conditional choice probability Pim(xm, zm).
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In the second step estimation, I take as given the first step estimates P̂im(xm, zm) of the

conditional choice probabilities. I then construct the pseudo log-likelihood function and

find the maximizer of the pseudo log-likelihood function. For a given value of (x, z), for

a given y = (yLCC, yOA), I estimate the parameters θ by maximizing the following pseudo

log-likelihood function:

ℓ(θ, P̂) =
M

∑
m=1

∑
i

yim ln Ψi

(
P̂m(xm, zm), xm, zm, θ

)
+(1− yim) ln

(
1 − Ψi

(
P̂m(xm, zm), xm, zm, θ

))
,

(25)

where Ψi(·) is the equilibrium condition defined by

Ψi

(
P̂m(xm, zm), xm, zm, θ

)
=
∫

εi

P̂im(xm, zm) exp
(

βcons
i + β

pres
i zim + βsize

i xm + δi P̂j(xm, zm) + ε im

)
P̂im(xm, zm) exp

(
βcons

i + β
pres
i zim + βsize

i xm + δi P̂jm(xm, zm) + ε im

)
+ 1 − P̂im(xm, zm)

dΦ(ε im).

5.5 Estimation Result

Table 5 presents the estimation results under the assumption that players acquire costly

information. For both LCC and OA, the coefficients on market presence and market size

are positive and statistically significant. This means that markets with existing airline pres-

ence and larger market sizes generally offer higher expected profits for entry. The constant

terms for both LCC and OA, which capture the average profit from entry independent of

the observed firm and market characteristics, are negative and statistically significant. The

negative constant term can be interpreted as the entry barrier faced by firms, and the re-

sults indicate that this barrier is more substantial for LCC than OA.

The competitive effects are negative for both LCC and OA, consistent with the expec-

tation that increased competition reduces a firm’s entry profit. However, the coefficient

for LCC is not statistically significant. This suggests that, conditional on other variables,

the entry of OA does not influence LCC’s entry decision. By contrast, LCC’s entry deci-

sion has a statistically significant negative effect on OA’s entry decision. In the context of

costly information acquisition, this implies that LCC relies more heavily on its own payoff

uncertainty, making the acquisition of precise information more critical for its decision.
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Table 5: Estimation results of the entry game with costly information acquisition

LCC OA

Market Presence 16.4100 2.5118

(0.5552) (0.1185)

Market Size 0.0407 0.0853

(0.0124) (0.0104)

Competitive Effect -0.0301 -0.1963

(0.0651) (0.0517)

Constant -1.0847 -0.7013

(0.0653) (0.0469)

Log Likelihood -5839.21

Observations 7882

Notes: This table reports the estimation results of the model with costly information acquisition. The

standard errors are computed using the bootstrap method with 1,000 replications. The standard errors

are in parentheses.

5.6 Information Acquisition

I can compute the amount of information acquired by each firm in each market using the

estimated parameters. The amount of information acquired by firm i in market m is given

by

Iim(Fim, Pim(xm, zm)) = H(Fim(·))− E [H(Pim(·|yim; xm, zm))] , (26)

where Pim(xm, zm) is the equilibrium choice probability and Pim(·|, yim; xm, zm) is the pos-

terior beliefs.

Table 6 reports the mean, median, and maximum of the amount of information ac-

quired by LCC and OA. The mean of the amount of information acquired by LCC is from

0.0363, while that by OA is 0.0543. The LCC tends to acquire less information than OA.

The same pattern is observed in the median and maximum of the amount of information

acquired. The median and the maximum of the amount of information acquired by LCC

are 0.0250 and 0.1198, respectively, which are lower than those of OA. These results in-

dicate that LCC tends to acquire less information than OA, which may be due to their
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business model that focuses on cost efficiency.

Table 6: The Amount of Information Acquired

LCC OA

Mean 0.0363 0.0543

Median 0.0250 0.0546

Max 0.1198 0.1330

Figure 4 presents the distribution of the amount of information acquired by LCC and

OA, along with fitted normal density functions. The distribution of the amount of infor-

mation acquired by OA appears to have a higher mean and a smaller variance than that

of LCC. This indicates that OA tends to acquire more information than LCC and suggests

systematic differences in the role of information across the two firms.

Figure 4: The amount of information acquired

Notes: This figure shows the histogram of the estimated amount of information acquired by LCC and

OA. The solid lines represent the fitted normal density functions. The negative values of the amount of

information acquired are due to the numerical approximation errors.
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5.6.1 Comparison to Perfectly Private Information Structure

I compare the model with costly information acquisition to the model without such costs.

When the cost of information is zero, each player acquires full information about the exact

value of their own payoff shock ε i. This corresponds to the perfectly private information

structure studied in Seim (2006); Bajari et al. (2010); Aradillas-Lopez (2010). The key dis-

tinction between the two models lies in whether firms observe their own payoff shock

when making entry decisions. In my model with costly information acquisition, firms do

not observe payoff shocks prior to entry decisions. In contrast, under the perfectly private

information structure, firms perfectly observe their own payoff shock. The estimation re-

sults for the perfectly private information structure model are reported in Table 7.

In the model without information acquisition, the estimated coefficients on market

presence and market size are substantially larger for both LCC and OA compared to the

model with costly information acquisition. This suggests that when firms observe their

private payoff shocks, the observed market characteristics become more influential in ex-

plaining their entry decisions. The constant terms also become significantly more negative

in the perfectly private information model, implying a larger barrier of entry.

The estimated competitive effects differ across the two models. In the model with

costly information acquisition, the absolute value of estimates of competitive effect for

LCC is smaller than that for LCC in perfectly private information model. However, the

competitive effect remains insignificant for LCC. The estimates for OA show similar re-

sults as in the perfectly private information model.

All the coefficients, except for the LCC’s competitive effect, increase in the magnitude

of coefficients from the perfectly private information model, as compared to the costly

information acquisition model. This suggests that when firms are modeled with perfectly

private information structure, the estimation may attribute a greater influence to observed

firm and market characteristics. When firms are assumed to perfectly observe their own

payoff shocks, conditional choice probabilities are more affected by observable variables,

such as market presence and market size. As a result, the model may overestimate the

influence of these variables.

Finally, the lower log likelihood for the perfectly private information model indicates

that the model with costly information acquisition provides a better statistical fit to the

observed data. This finding supports the idea that firms’ actual decision making likely
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incorporates a more sophisticated, endogenous information strategy.

Table 7: Estimation results of the entry game without information acquisition

LCC OA

Market Presence 62.9220 9.6254

(1.4240) (0.3466)

Market Size 0.1141 0.3315

(0.0331) (0.0302)

Competitive Effect -0.0091 -0.3254

(0.1057) (0.0610)

Constant -4.1228 -2.8645

(0.1245) (0.1242)

Log Likelihood -5986.84

Observations 7882

Notes: This table reports the estimation results of the perfectly private information model. In this infor-

mation structure, each firm only observe their own payoff shock εi, but not rival’s payoff shock ε j. The

standard errors are in the parentheses.

6 Conclusion

This paper has proposed a novel econometric framework for static discrete games with

costly information acquisition. In contrast to the existing literature, in the model, players

acquire information about their own payoffs, but acquiring the information incurs costs,

which is proportional to the mutual information. I characterized the Nash equilibrium

conditions and established equilibrium existence and uniqueness condition. I showed that

the model primitives are identified for for both parametric and semiparametric settings,

and I presented the identification results via Monte Carlo experiments. Finally, I applied

the proposed framework to U.S airline market entry decisions and found that the low-cost

carriers acquire less information about profits compared to other airlines, which may be

due to their business model that focuses on cost efficiency.
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A Proofs

A.1 Proof of Lemma 1

Proof. Let σi(τ
X,Z
i ) be player i’s optimal action decision rule after receiving a signal τX,Z

i ∈

T X,Z
i . Suppose to the contrary that player i plays not only pure strategies but also mixed

strategies. Define the following sets

Ti0 := {τX,Z
i ∈ T X,Z

i | σi(τ
X,Z
i ) = 0},

Ti1 := {τX,Z
i ∈ T X,Z

i | σi(τ
X,Z
i ) = 1},

Ti,mixed := {τX,Z
i ∈ T X,Z

i | σi(τ
X,Z
i ) ∈ (0, 1)}.

The three sets form a partition of player i’s signal space T X,Z
i . Due to the information

cost, the player does not have an incentive to investigate signal realizations that induce

the same action. For instance, the player does not distinguish τ′
i ̸= τi such that τi, τ′

i ∈ Ti1

and σi(τ
′
i ) = σi(τi) = 1. The effort to process the details of signals incurs information costs

but gives no extra benefits. Thus, player i’s signal space is equivalent to a set with at most

three elements.

Given the optimal information structure SX,Z
i and the optimal action decision rule σi(·),

the expected payoff under SX,Z
i excluding the information cost is∫

εi

∫
τX,Z

i

Ui(Yi, Y−i, ε i; X, Zi)σi(τ
X,Z
i ) PX,Z

i (τX,Z
i | ε i)dτX,Z

i dFi(ε i).

Next, consider a new information structure S̃X,Z
i = (T̃ X,Z

i , P̃X,Z
i ) such that T̃ X,Z

i =

{t0, t1}. Let the optimal action decision rule σ̃i(·) associated with the new information

structure S̃X,Z
i be

σ̃i(t0) = 0

σ̃i(t1) = 1.

The distribution of the signals are defined by

P̃X,Z
i (t0 | ε i) =

∫
Ti0∪Ti,mixed

PX,Z
i (τX,Z

i | ε i)dτX,Z
i

P̃X,Z
i (t1 | ε i) =

∫
Ti1

PX,Z
i (τX,Z

i | ε i)dτX,Z
i
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for any payoff shock ε i ∈ Ei. The expected payoff under S̃X,Z
i excluding the information

cost is identical to that under Si since∫
εi

Ui(Yi, Y−i, ε i; X, Zi)σ̃i(t0) P̃X,Z
i (t0 | ε i)dFi(ε i) +

∫
εi

Ui(Yi, Y−i, ε i; X, Zi)σ̃i(t1) P̃X,Z
i (t1 | ε i)dFi(ε i)

=
∫

εi

∫
Ti0∪Ti,mixed

Ui(Yi, Y−i, ε i; X, Zi)σi(τ
X,Z
i ) PX,Z

i (τX,Z
i | ε i)dτX,Z

i dFi(ε i)

+
∫

εi

∫
Ti1

Ui(Yi, Y−i, ε i; X, Zi)σi(τ
X,Z
i ) PX,Z

i (τX,Z
i | ε i)dτX,Z

i dFi(ε i)

=
∫

εi

∫
τX,Z

i

Ui(Yi, Y−i, ε i; X, Zi)σi(τ
X,Z
i ) PX,Z

i (τX,Z
i | ε i)dτX,Z

i dFi(ε i)

Notice that the information structure S̃X,Z
i is less informative than SX,Z

i if Ti,mixed is

nonempty or |Ti| > 2. If Ti,mixed is nonempty or |Ti| > 2, then S̃X,Z
i does not require

player i to process signal realizations within Ti0 and Ti,mixed. The mutual information cost

function has a property that the more informative it is, the more it costs. By this property,

S̃X,Z
i is cheaper than SX,Z

i , and the player’s net expected payoff is greater under the new

information structure S̃X,Z
i . This contradicts the optimal information structure SX,Z

i . There-

fore, the player does not choose mixed strategy and the cardinality of the signal space is

at most two.

A.2 Proof of Proposition 1.

Let the rival’s information strategy be PX,Z
j (Yj|ε j). Define the deterministic expected payoff

(14) by

EUi(X, Z) = πi(X, Zi) + δi(X, Zi)PX,Z
j (Yj|ε j).

I construct the Lagrangian for the expected payoff maximization problem:

L(Pi) =
∫

εi
∑

Yi∈Yi

(EUi(X, Z) + ε i) PX,Z
i (Yi|ε i)dF(ε i)

− λi

[∫
εi

(
∑

Yi∈Yi

PX,Z
i (Yi|ε i) log PX,Z

i (Yi|ε i)

)
dFi(ε i)− ∑

Yi∈Yi

PX,Z
i (Yi) log PX,Z

i (Yi)

]

+ ∑
Yi∈Yi

∫
εi

ξ(ε i)PX,Z
i (Yi|ε i)dFi(ε i)−

∫
εi

µ(ε i)

(
∑

Yi∈Yi

PX,Z
i (Yi|ε i)− 1

)
dFi(ε i)

where

PX,Z
i (Yi) =

∫
εi

PX,Z
i (Yi|ε i)dFi(ε i),

ξ(ε i) ≥ 0 is the Lagrangian multiplier for the constraint:

PX,Z
i (Yi|ε i) ≥ 0, ∀ε i ∈ Ei
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and µ(ε i) is the Lagrangian multiplier for the constraint:

∑
Yi

PX,Z
i (Yi|ε i) = 1, ∀ε i ∈ Ei

If
∫

εi
PX,Z

i (Yi|ε i)dFi(ε i) > 0, the first-order condition with respect to PX,Z
i (Yi|ε i) is:

(EUi(X, Z) + ε i)− λi

[
log PX,Z

i (Yi|ε i) + 1 − log
(

PX,Z
i (Yi)

)
− 1
]
+ ξ(ε i)− µ(ε i) = 0

Since
∫

εi
PX,Z

i (Yi|ε i)dFi(ε i) > 0 implies PX,Z
i (Yi|ε i) > 0, the complementary-slackness

condition gives ξ(ε i) = 0 and µ(ε i) > 0. Thus I have

PX,Z
i (Yi|ε i) = PX,Z

i (Yi) exp
(
(EUi(X, Z) + ε i)− µ(ε i)

λi

)
Plugging the above expression for PX,Z

i (Yi|ε i) into the constraint ∑Yi
PX,Z

i (Yi|ε i) = 1

gives

PX,Z
i (Yi|ε i) =

PX,Z
i (Yi) exp (EUi(X, Z) + ε i)

1/λi

∑Y′
i

PX,Z
i (Y′

i ) exp (EUi(X, Z) + ε i)
1/λi

(27)

A.3 Proof of Proposition 2.

Proof. Let P(X, Z) ≡ (P1(X, Z1, Z2), P2(X, Z2, Z1)) ∈ [0, 1]2. I define the fixed point map-

ping Φ : [0, 1]2 → [0, 1]2

Φ(P(X, Z), X, Z) =


∫

ε1

P1(X,Z) exp(EU1(X,Z)+ε1)
1/λ1

P1(X,Z) exp(EU1(X,Z)+ε1)
1/λ1+1−P1(X,Z)

dF1(ε1)∫
ε2

P2(X,Z) exp(EU2(X,Z)+ε2)
1/λ2

P2(X,Z) exp(EU2(X,Z)+ε2)
1/λ2+1−P2(X,Z)

dF(ε2)

 .

Given Assumption 1, Φ satisfies the conditions for Brouwer’s Fixed Point Theorem. There-

fore, there exists a fixed point (P1(X, Z1, Z2), P2(X, Z2, Z1)) ≡ P(X, Z) ∈ (0, 1)2 such that

solves

Φ(P(X, Z), X, Z) = P(X, Z).

A.4 Proof of Proposition 4.

Proof. Fix an arbitrary realization of player i’s player-specific variable Zi = zi and market-

specific variable X = x. By Assumption 3, the rival’s player-specific variable Zj has con-

tinuous variation conditional on Zi = zi. I can find two realizations of Zj, and say z1
j and
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z2
j . The equation (16) for these realizations leads to the following system of equations

G−1
i (Pi(x, zi, z1

j )) = πi(x, zi) + δi(x, zi)Pj(x, z1
j , zi)

G−1
i (Pi(x, zi, z2

j )) = πi(x, zi) + δi(x, zi)Pj(x, z2
j , zi)

By the Assumption 4, both values of Pi(x, zi, z1
j ) and Pi(x, zi, z2

j ) are known to the econome-

trician. Moreover, by the Assumption 1, the function G−1
i (·) can be derived by the econo-

metrician. The above system of equations contains two equations with two unknowns,

πi(x, zi) and δi(x, zi).

Assumptions 3 and 4 imply that Pj(x, z1
j , zi) ̸= Pj(x, z2

j , zi), and the rank condition for

the above system of equations is satisfied. Therefore, the unknown functions πi(x, zi) and

δi(x, zi) are identified. Since the choice of zi and x was arbitrary, the functions πi(X, Zi)

and δi(X, Zi) are identified for all values of Zi and X in its support.

A.5 Proof of Proposition 5.

Proof. For simplicity, suppose that πi(Zi) = Ziβi and δi(Zi) = δi. The parameter vector

of interest is θ = (β1, β2, δ1, δ2). Assume that Zik has an everywhere positive Lebesgue

density conditional on Zi,−k and the matrices Zi and Zj have full column rank.

Without loss of generality, assume β2k > 0, and let Z2k be small enough conditional

on Z2,−k. Consequently, β2Z2k ≈ −∞, and player 2’s expected deterministic payoff of

choosing Y2 = 1 is

EU2(Z2, Z1; θ) = Z2β2 + δ2 · P1(Z1, Z2; θ) ≈ −∞.

The conditional choice probability for player 2 is

P2(Z2, Z1; θ) =
∫

ε2

P2(Z2, Z1; θ) exp (EU2(Z2, Z1; θ) + ε2)
1/λ2

P2(Z2, Z1; θ) exp ((EU2(Z2, Z1; θ) + ε2))
1/λ2 + (1 − P2(Z1, Z2; θ))

dF2(ε2)

≈
∫

ε2

P2(Z2, Z1; θ) · 0
P2(Z2, Z1; θ) · 0 + (1 − P2(Z2, Z1; θ))

dF2(ε2) = 0

as EU2(Z2, Z1; θ) ≈ −∞. Thus, player 2 will choose the action Y2 = 0 for all values of Y1

and Z1.

Given that P2(Z2, Z1; θ) ≈ 0 as EU2(Z2, Z1; θ) ≈ −∞, player 1’s expected deterministic

payoff of choosing Y1 = 1 is

EU1(Z1, Z2; θ) = Z1β1 + δ1 · P2(Z2, Z1; θ) = Z1β1,
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and the conditional choice probability is

P1(Z1, Z2; θ) =
∫

ε1

P1(Z1, Z2; θ) exp (Z1β1 + ε1)
1/λ1

P1(Z1, Z2; θ) exp (Z1β1 + ε1)
1/λ1 + (1 − P1(Z1, Z2; θ))

dF1(ε1)

Next, I claim that P1(1 |Z1, Z2; θ) ̸= P1(1 |Z1, Z2; b) for b ̸= θ.

Suppose to the contrary P1(Z1, Z2; θ) = P1(Z1, Z2; b) ∈ (0, 1). The full rank condition

on Z1 guarantees Z1β1 ̸= Z1b1 for b1 ̸= β1 and the exponential function is strictly mono-

tonic. It follows that

exp
(

1
λ1

(Z1β1)

)
̸= exp

(
1

λ1
(Z1b1)

)
.

Without loss of generality, assume Z1β1 > Z1b1 for b1 ̸= β1 and exp
(

1
λ1
(Z1β1)

)
>

exp
(

1
λ1
(Z1b1)

)
.

Let the function I(x) be defined by

I(x) =
p exp

( 1
λ (x + ε)

)
p exp

( 1
λ (x + ε)

)
+ (1 − p)

This function is strictly increasing in x since the derivative with respect to x is always

positive:
dI
dx

=
1
λ p(1 − p) exp

( 1
λ (x + ε)

)
[p exp

( 1
λ (x + ε)

)
+ (1 − p)]2

> 0.

Thus I have

P1(Z1, Z2; θ) =
∫

ε1

P1(Z1, Z2; θ) exp
(

1
λ1
(Z1β1 + ε1)

)
P1(Z1, Z2; θ) exp

(
1

λ1
(Z1β1 + ε1)

)
+ (1 − P1(Z1, Z2; θ))

dF1(ε1)

=
∫

ε1

P1(Z1, Z2; b) exp
(

1
λ1
(Z1β1 + ε1)

)
P1(Z1, Z2; b) exp

(
1

λ1
(Z1β1 + ε1)

)
+ (1 − P1(Z1, Z2; b))

dF1(ε1)

>
∫

ε1

P1(Z1, Z2; b) exp
(

1
λ1
(Z1b1 + ε1)

)
P1(Z1, Z2; b) exp

(
1

λ1
(Z1b1 + ε1)

)
+ (1 − P1(Z1, Z2; b))

dF1(ε1)

= P1(Z1, Z2; b)

Since I have assumed Z1β1 > Z1b1 for b1 ̸= β1, it follows that P1(Z1, Z2; β) > P1(Z1, Z2; b).

Therefore, the assumption that P1(Z1, Z2; β) = P1(Z1, Z2; b) leads to a contradiction. Hence,

P1(Z1, Z2; β) ̸= P1(Z1, Z2; b) for b ̸= β, and this result identifies β1.

As for the identification of β2, assume β1k > 0, and choose Z1k small enough such that

Z1kβ1k ≈ −∞. β2 is identified using the similar argument.

As for the identification of δi for i = 1, 2, let Zik ≈ ∞. δ1 and δ2 are identified using the

similar argument.

46


	Introduction
	Model
	Payoff Structure
	Information Structure
	Timeline of the Game
	Costly Information Acquisition
	Strategy and Equilibrium
	Equilibrium Existence and Uniqueness

	Identification
	Data Generating Process and Identification Conditions
	Identification Result: Semiparametric Model
	Identification Result: Parametric Model

	Monte Carlo Experiments
	Parametric Model
	Semiparametric Model

	Empirical Application
	Motivation
	Data
	Preliminary Analysis
	Structural Entry Game Analysis
	Estimation Result
	Information Acquisition
	Comparison to Perfectly Private Information Structure


	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Proposition 1.
	Proof of Proposition 2.
	Proof of Proposition 4.
	Proof of Proposition 5.


